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The surface energy and Hcl for a superconductor with a 
tricritical point 

I A Fomint and B Lyons 
Institut %r Theorie der Kondensierten Materie, Universitat Karlsnthe. Physikhochhaus, 
Postfach 6980. D-7503 Karlsnrhe. Federal Republic of Gennany 

Received 24 March 1993 

Abstract The energy of a plain boundary telween a superconducting and normal region for 
a superconductor with a tricritical point is found as a function of the parameters entering the 
Ginzburg-Landau expansion of the free energy of such a superconductor. We define the regions 
of these parametem over which this energy is positive and negative. The smclure of a quantized 
vortex is defined in the limit of large values of the parameter of Ginzburg and Landau, and ule 
characteristic features of a temperature dependence of H.I are discussed in comparison to those 
of usual superconducton. 

1. Introduction 

In recent years, much attention has been given to the investigation of superconducting 
materials which demonstrate anomalous properties and cannot properly he described by the 
conventional BCS theory. This calls for possible modifications to the theory, which could 
account for the observed anomalies. Even with a scalar order parameter in the Ginzburg- 
Landau theory, there are still new possibilities which have, as of yet, not been previously 
investigated. It was recently suggested by one of the authors [l], in connection with the 
anomalies observed in heavy-fermion superconductors, and in particular Vpt,, that in certain 
situations superconductivity could be exemplified as a first-order phase transition. Such a 
situation arises, naturally, if one allows for a negative coefficient in front of the quartic 
term in the Ginzburg-Landau expansion of the free energy, FI. It is henceforth necessary 
to include the next-higher-order term into the expansion of the free energy, and under the 
usual assumptions, one anives at the following expression for the density of the free energy: 

where + is an order parameter which is assumed to be a scalar complex function. The change 
in sign of the coefficient b influences both the thermodynamic and magnetic propelties of 
such a superconductor. The point at which b changes sign is known as a tricritical point (this 
will be referred as a TCP in what follows). In the vicinity of this point, the dependence of b on 
temperature and pressure (or density) has to be taken into account and this coefficient cannot 
be treated as a parameter of a given material any longer. Incorporation of a sixth-order term 
in expansion (1) brings about the ensuing change in the Ginzburg-Landau equations: 

(2) 
curl curl A = (4rr/c)[(ien/2m)(+'V+ - SO+*)  + (2e2/mc)l+12A]. (3) 
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F, = F,+al+lZ+b/21v14+d/31~16 (1) 

(1/4m)(-ihV - ( 2 e / ~ ) A ) ~ +  - aF,/a+* = 0 
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The effect of this change can already be seen from a dimensional analysis of these equations. 
There are, as usual, two characteristic lengths in the problem as seen in [ 2 ] a  penetration 
depth 6 and a correlation length 5;  they are expressed in terms of the coefficients a,  b, d 
and the universal constants e, h, m ,  cas in [I]: 

6’ = mc2/8ze2@i 

I A Fomin and B Lyons 

e2 = -hz/4m(20 + b@:) 

where $: = ( w - b ) / 2 d  is the equilibrium value of the order parameter. The ratio 
of these two lengths is referred to as the parameter of Ginzburg and Landau, denoted by K :  

K’ = (a/:)’ = ( l / 2 r ) ( m c / e h ) z d E =  ( l / 2 b o ) d G i  

HO = (hc/Pe)/hS. 
where the notation bo = x(eh/md)’ is introduced The characteristic field is 

Using S and HO as the units, one can introduce dimensionless quantities; $’ = */@o, 
r‘ = r/6, B’ = B / H o ,  A’ = A/H& F; = (8x/H$) Fv In these units, the coefficients 
entering expression ( I )  can be expressed in terms of one dimensionless parameter 

0 = b / d G .  
Then, the dimensionless density of the free energy takes on the foUowing form: 

F:- F , ’ = [ ( l  +~)/~ll@’l’+(B/1)l@’14+I(1-0)/~111116 (4)  
In dimensionless units, equations (2) and (3) have the form 

(-(i /K)V‘ - A’)’@‘ - [(l +0)/21@ +e@l@l* + [(I - 0)/21@1@14 = 0 (5) 

curl curt A‘ = ( i / h ) ( @ ’ * V @ ’  - $‘V@’*) - I@‘I’A‘. (6) 
In comparison to the usual case in [2], an additional dimensionless parameter B enters 
into these equations. A superconducting phase can exist as thermodynamically stable for 
6 varying within the interval between -2 e 0 < 1. When 0 = I, or equivalently, a = 0 
in equation (1). one has a second-order phase transition line. When 0 is close to unity, 
the sixth-order term in expansion (4) is small and the properties of a superconductor are 
defined by the first two terms, as in the usual case. The other boundary of the interval, i.e. 
0 = -2, is a line of the first-order transitions (3bZ = 16d). The dependence of 5 ,  S and 
HO on temperature in the vicinity of a first-order transition line is different to the behaviour 
manifested by these quantities near a second-order transition line. Neither 6 nor 6 diverge 
when 0 < -2; .$ diverges on approaching the boundary of overheating of a superconducting 
phase, which corresponds to 0 -+ --CO (or bZ -4ad in the usual units). When 0 = -2, the 
superconducting phase can exist only as a metastable phase. The characteristic field, Ho. 
does not coincide with the thermodynamic critical field, H,, and it remains finite upon a 
first-order transition; HO turns to zero as 8 tends to the negative infinity. 

Within the domain of stability of a superconducting phase, one can signify two more 
characteristic regions: 

(1) the vicinity of B = 0 (or b = 0) where the properties of a superconductor are defined 
by an interplay between the first and the third term on the RHS of (4); and 

(2) the vicinity of 0 = - 1 (or U = 0, b < 0); where only the second and third terms on 
the RHS Of (4) are of importance. The line 0 = -1 has the meaning of a limit of overcooling 
of the normal phase. 

It should be pointed out also that of the parameters K and 0 can neither be considered 
as inherent constants of a particular material; they can vary with temperature even withii 
the Ginzburg-Landau region. 
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The formal differences with respect to the usual case, which have been summarized 
above, give rise to changes in the physical propelties of the superconductor in the vicinity 
of a TCP, or when b is negative. Some of these properties are anomalous with respect to the 
standard point of view. Such anomalies can be used to identify possible superconductors 
with a TCP. A general discussion of the thermodynamic and magnetic properties of 
superconductors with a TCP was given in [l]. A more systematic theoretical investigation 
into the nature of superconductors with a TCP would be of considerable benefit in the 
endeavour to find and validate superconductors with a TCP. In section 2, we find the 
surface energy, i.e. the energy of a phase boundary between a normal and a superconducting 
region of a superconductor with a TCP. In section 3, the characteristic features of the Hcl 
line for superconductors with a TCP are considered in comparison with those of a usual 
suponductor. 

2. The surface energy 

To find the energy of a phase boundary between a normal and superconducting region, we 
follow the usual scheme [2]. We orient the x axis perpendicular to the boundary. The 
magnetic field, B(x), is assumed to be parallel to the z axis. The vector potential can be 
chosen in the form A, = A, = 0, A, = A(x) ,  and the order parameter can be assumed to 
be a real function. With these simplifications, equations (5) and (6) become equations in 
one dimension: 

(7) (l/Kz)dz@/dnz - A'@ + [(l + B)/2]@ - - [(l - B)/21@' = 0 

dzA/dx2 - +'A = 0. (8) 
The boundary conditions for this problem are 

$+ 1 d$/dx+O dA/dr+O atx-t+w 

+ + O  d+/dx+O d A / d x + ~ ~  a t x + - w  

(in the superconducting region) (9) 

(in the normal region). (10) 
The condition on dA/& in the normal region is due to the normalization of the field which 
is used here. As was shown earlier [ 11, the thermodynamic magnetic field H ,  is related to 
Ho via H A  = H i ( 2  + 0)/6. The system of equations (7) and (8) have a first integral 

(1/K2)(d+/dn)2 + (dA/dx)' - A'@'+ [(l + B)/211/r2 - (B/Z)@'  - [(I - 6)/61@ 

= E = constant. (11) 

For the boundary conditions (IO), E = (2 + 8)/6. When a proper solution of equations (7) 
and (8) is found, the corresponding surface energy can be calculated with the aid of 

Eventually, U, is defined as a function of K* and 6'. At a given field, K* and 6 are 
constrained by the condition for the existence of two phases in equilibrium H = &,,,(K, B )  
or, as was shown earlier [ 11 
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where Hd = J@/n/d)b:/dz is a generic characteristic field of a material. 

phases coexist at 0 = -2 and the integral (12) takes the form 
To begin with, let us find the surface energy for a zero magnetic field. In this case, two 

(I/K*)(d$/&r)* - i+'(1 - $')' = 0. (14) 

This equation is easily solved. The solution satisfying boundary conditions (9) and (IO) is 

(15) $' = f[  1 + tanh((~/JZ)x)] 

$' = ;$;[I + tanh(x/tJZ)] 

or, in the original units 

(16) 

= ( h / l b [ ) m .  When solution (15), together with the 

(17) 
This energy is always positive. On the other hand, one knows that in the vicinity of 0 = 1, 
ow is negative for K > I /& Regions of psitive and negative U, are separated in the 8,  
K plane by a line K = K , ( B ) ,  on which the condition 

uns(e, K )  = o (18) 
is met One point on this line is known [21, which is B = I ,  K = I&. Since, at B = -2, 
for all K ,  U- is positive we conclude that ~ ~ ( 0 )  tends to infinity as e + -2 To find a 
leading term on the asymptotics of KO(@ at B --f -2, let us substitute expression (12) into 
equation (18) and rewrite it in the following form: 

with $; = - i b / d  and 
condition that B = dA/dx = 0 is substituted into equation (12), we obtain 

U$' = Hi:/161rfi = (ha/4)-, 

The integral on the LHS remains infinite at 0 I -2. and, in order to evaluate it in a leading 
order in 0 + 2, one can use (15). A straightforward integration gives the result ~/4-&. 
The evaluation of the RHS of equation (19) is effected by implementation of the fact that 
K >> 1 when 0 is in the neighbourhood of -2; this, in turn, means that the characteristic 
range over which the magnetic field changes is much greater than the corresponding range 
of $. The main contribution to the integral comes from a region in which @, with good 
accuracy, is equal to the equilibrium value. We can assume that in (S), $ changes at x = 0 
discontinuously from 0 to 1. The solution to (8). satisfying the boundary conditions at both 
infinities, is then 

Together with this and the equation for dA'/dx. the integral on the RHS of (19) is equal to 
(2+8)/12. Finally, we obtain for (19) 

1 /4&K = (2 + @)/I2 

or 

x0 (e) = 3/.Jz(2 + e). (21) 
It turns out that equation (21). being a leading term in the expansion of ,yo(@) on 2 + 0 
at 0 --t -2 gives the correct result for 0 = 1 as well. One can expect that it will give 
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a reasonable result in the intermediate region. For a more exact evaluation of x,,(B) the 
problem was solved numerically. Some of the results of this analysis are represented in 
figures 1 and 2. Equation (21) turned out to be a good approximation for all B. To resolve 
the difference between numerical and asymptotic results we had to plot, as depicted in 
figure 3, both curves in the B and Ilx coordinates. 

The curve of coexistence, (13) starts at B = -2 in a region of positive uDS, but, when the 
magnetic field increases, it goes into a region of larger B and at a certain field, H,, it crosses 
the curve He@) and on$ on the coexistence curves changes its sign. For heavy-fermion 
materials, which could be candidates for application of this analysis, typical values of K are 
large (K  lO-IOO), this means that in order to evaluate H, we can apply the asymptotic 
equation (21). Combining this equation with equation (13). one can obtain, in the limit 
K >> 1 the result 

H, = ~ ~ / 2 3 / 4 ~ z  (22) 
or, directly in terms of the coefficients b and d 

H, = (3Ji?/d)bi'4(lbl/2)5". 
One can see from equation (22) that, for large K ,  the interval of fields for which unns is 
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positive, is small in comparison to the characteristic field Ho. This reflects the tendency to 
approach the properties of a type-I1 superconductor with increasing K .  

3. Flux Lines a d  Hcl 

To specify the domain of existence of the Meissner phase, one needs to know the lower 
critical field H,,, i.e. the field at which creation of quantized vortices becomes energetically 
advantageous. This field is defined by the energy F; of such a vortex per unit length [2] 

Hcl ( K / ~ T )  Fi. (24) 
In order to evaluate this energy, one has to find a proper solution of the Ginzburg-Landau 
equation. In contrast to the problem considered in the previous section, the order parameter 
is, in this case, an essentially complex function: $ = fe’x, and its phase changes by 2nn 
(n is an integer number) on any contour circumfering a vortex line. Following the usual 
procedure I2.31, we discuss only one-quantum cylindrically symmetric vortex. 

The equations of Ginzburg and Landau in that case can be written, as in [3] 

(I/K*p)(d/dp)(pdfldp)’ - ( I / f ’ ) (dB/d~)~  + [(I + W l f  - of2 
- [(I -e)i21f5 - 9 (2.5) 

(1/P)(d/dp)[(p/f2)(dB/dp)] = B. (26) 
The boundary conditions on the vortex are 

f + l  B - 0  dB/dp+O a s p + o o  (27) 

f + O  (I/f2)dB/dp + - 1 / ~ p  asp + 0. (28) 
The energy of the vortex line in dimensionless units can be calculated from the equation 

which, for the energy (4) gives 
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It can easily be verified that equations (25) and (26) become essentially 0 dependent when 
either (1  - f )  << 1 or f << 1 are satisfied Consequently the dependence o f f  on p, in the 
asymptotic limit as p tends to 0 and as p tends to 00, is insensitive to varying 8. Varying 
the value of 0 influences the behaviour o f f  in the 'core' region p 2: 1 / ~ .  

We consider the most interesting situation in the sense of possible application, i.e. K >> 1. 
In such a case, we use simplifications arising from the difference in the characteristic scales 
of the variation of the magnetic field and the order parameter [2]. In the range of p in which 
the most significant contribution to the integral occurs, it is possible to equate f to unity in 
finding B from equation (26), and the asymptotic value of B, as p tends to 0 ( p  << I), can 
be substituted into the equation determining f. Then one arrives at the following equation 
for f: 

( ~ / K * ~ ) ( d / d p ) C O d f / d p ) - ( ~ / ~ * ~ * ) f + ~ f ( 1  - f z ) [ ( l + @ ) + ( l  -e)f2] =O. (31) 
As in the usual case, the principal contribution to the integral in equation (30) comes from 
that region of p in which 1 >> p >> K-' is fulfilled. In that region, the proper solution of 
(31) is 

f 2  = 1 - 1/K2p2. 

Substitution of this expression into equation (30) gives 

which in tum gives for H,I 
H,, = (&/h) In K. 

As was discussed in the introduction, the field HO remains finite at Tc and becomes zero 
only when the limit of overheating is reached. This means that the line H,I (T)  crosses 
the line H,(T) at a finite field. Comparison of (22) with (32) reveals that the intersection 
of H,i (T)  with Hcm(T) does not coincide with the point where the surface energy is zero 
on Ha. The latter point, i.e. the point where the surface energy tums to zero, is larger 
than the former point and the surface energy is still positive at the point at which H , I ( T )  
intersects H,(T). This reflects the fact that the geometry of a vortex is energetically more 
advantageous for the penetration of a magnetic field into a superconductor as opposed to 
the geometry of a plain wall. 

4. Discussion 

Both the surface energy and the characteristic features of temperature dependence of H,, 
can be used as an experimental identification of superconductors with a TCP. The surface 
energy defines the structure of the intermediate state of superconductors. Such a state 
can be realized in a superconductor with a TCP if the sample under investigation is of 
a suitable form, and if the-magnetic field at which transition takes place is smaller than 
H,,. Observation of the intermediate state would show directly that a, is positive, that 
the superconducting and normal phase coexist and that the phase transition is of the first 
order. Resolution of the structure of the intermediate state would make it possible to extract 
the values of the surface energy from experimental data and to compare it with the present 
calculations. 

For Hcl,  the qualitatively new feature in the curve of H,,(T) is its intersection with 
the cuwe H,(T) at a finite H. For usual type4  superconductors, three curves Hc,(T), 
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Hm(T) and & ( T )  intersect at one point T = T,, where all three fields are zero. For 
a superconductor with a TCP, only H,, = 0 at T,; H,z(T) exhapolates into the point of 
overheating of the superconducting phase. 

In [ I ] ,  the possibility of UPt3 being a superconductor with a TCP was discussed. The 
existing data on Hcl for this material [4] do not show the anomalies discussed above. 
It should be mentioned in that respect that, for observation of the anomalies, one needs 
particularly accurate measurement in the vicinity of Tc, where Hc, becomes smaller. The 
measurements in this region are not sufficiently accurate, which leaves mom for further 
speculation. We mention here, for completeness, one more characteristic feature of the 
magnetic behaviour of a superconductor with a TCP, which can be used for its identification 
in low-field experiments. which is the vertical tangent of dependence of a critical field on 
temperature at T,. 
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